QoS-Aware Precoder Optimization for Radar Sensing and Multiuser Communications Under Per-Antenna Power Constraints
Published in IEEE Transactions on Wireless Communications, 2023
Abstract: In this work, we concentrate on designing the precoder for the multiple-input multiple-output (MIMO) dual functional radar-communication (DFRC) system, where the dual-functional waveform is designed for performing multiuser downlink transmission and radar sensing simultaneously. Specifically, considering the signal-independent interference and signal-dependent clutter, we investigate the optimization of transmit precoding for maximizing the sensing signal-to-interference-plus-noise ratio (SINR) at the radar receiver under the constraint of the minimum SINR received at multiple communication users and per-antenna power budget. The formulated problem is challenging to solve due to the nonconovex objective function and nonconvex per-antenna power constraint. In particular, for the signal-independent interference case, we propose a distance-majorization induced algorithm to approximate the nonconvex problem as a sequence of convex problems whose optima can be obtained in closed form. Subsequently, our complexity analysis shows that our proposed algorithm has a much lower computational complexity than the widely-adopted semidefinite relaxation (SDR)-based algorithm. For the signal-dependent clutter case, we employ the fractional programming to transform the nonconvex problem into a sequence of subproblems, and then we propose a distance-majorization based algorithm to obtain the solution of each subproblem in closed form. Finally, simulation results confirm the performance superiority of our proposed algorithms when compared with the SDR-based approach. In conclusion, the novelty of this work is to propose an efficient algorithm for handling the typical problem in designing the DFRC precoder, which achieves better performance with a much lower complexity than the state-of-the-art algorithm.
Index Terms: Dual-functional radar-communication, radar sensing, transmit precoding, signal-independent interference,signal-dependent clutter
Recommended citation: Wang C, Li Z, Al-Dhahir N, et al. QoS-aware precoder optimization for radar sensing and multiuser communications under per-antenna power constraints[J]. IEEE Transactions on Signal Processing, 2023, 71: 2235-2250.
Download Paper